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Complexity of real World and Modelling

Features of complex systems (biological systems, oceanology, geology,
physics, economics and sociology...etc):

openness,

fluctuation,

chaos,

disorder,

blur,

creativity,

contradiction,

ambiguity,

paradox,

instability
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Complexity of real World and Modelling

Albert Einstein:

”if we do not change our way of analyzing we will not be able to
solve the problems we create with our current ways of thinking”

But this new way of thinking has a name: Systemic approach or
mathematical modelling

”si nous ne changeons pas notre façon d’analyser les phénomènes, nous
ne serons pas capables de résoudre les problèmes que nous créons avec

nos modes actuels de pensée”

Or cette nouvelle manière de penser a un nom: Approche systémique ou
la modélisation mathématique.
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Stable models (Classical Mechanics,Scientific
positivism,17-19 century)

A model is said to be stable if small perturbations at its parameters
lead to small perturbations in its solutions

if the measurement errors at its parameters are proportional to the
measurement errors in the solutions

Example of stable model:∑
i

−−→
Fi (t) = m. d

2−→X
dt2 (t),

d
−→
X
dt (t0) =

−→
V0,

−−−→
X (t0) =

−→
X0
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Unstable models (J.Hadamard 1903, H.Poincaré,
Edward Lorenz 1961, A.Tikhonov 1963)

A model is said to be unstable if small measurement errors in its
parameters lead to uncontrollable measurement errors in its
solutions.

Nuclear physics, signal theory, inverse problems, image analysis,
geophysics, optimal control and PDE theory.
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Unstable models: Examples

Signal theory, Spectroscopy, Nuclear physics:

z(s)→ Ψ(x , s) → u(x)

Curve :
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Unstable models: Examples

The problem of studying the spectral composition of a beam of
light:
Suppose that the observed radiation is non-homogeneous and that the
distribution of the energy density over the spectrum is characterized by a
function z(s) which s is the frequency. If we pass the beam through a
measuring apparatus you obtain an experimental spectrum u(x), here x
may be the frequency and it may also be expressed in terms of voltage or
current of the measuring device.

Az =
∫ b

a
z(s)Ψ(x , s)ds = u(x), x ∈ [c , d ] (Theorical model):

Azε = uε (Approximated model)

uε(x) =
∫ b

a
zε(s)Ψ(x , s)ds∫ b

a
z1(s)Ψ(x , s)ds = u1(x), x ∈ [c , d ]

And

zε(s) = z1(s) + N.sin( s
ε )
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Unstable models: Examples

It is clear that zε is a solution of:

uε(x) =
∫ b

a
zε(s)Ψ(x , s)ds = u1(x) + N.

∫ b

a
sin( s

ε )Ψ(x , s)ds

‖ uε − u1 ‖L2[c,d ]→ 0, ε→ 0∀N

But:

‖ zε − z1 ‖′9 0, ε→ 0

In the two cases where:

‖ zε − z1 ‖′= maxs∈[a,b] | zε(s)− z1(s) |= N

Or

‖ zε − z1 ‖′=‖ zε − z1 ‖L2[a,b]= N( b−a
2 −

ε
2 sin( b−a

2 )cos( b+a
2 ))

1
2

If uε /∈ Im(A) :
∫ b

a
zε(s)Ψ(x , s)ds = uε(x), x ∈ [c , d ],S = ∅
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Unstable models: Examples

We use the notion of quasi-solution: Find zε ∈ H (H is taken from
practical considerations) such that:

minz∈H ‖ Az − uε ‖=‖ Azε − uε ‖

where ‖ . ‖ is a specified norm and H is a specified space.
In this case if:

‖ uε − u1 ‖→ 0, ε→ 0

It is not true that:

‖ zε − z1 ‖′→ 0, ε→ 0.

The problem of finding z ∈ H such that minv∈H ‖ Av − u ‖=‖ Az − u ‖
is more general to find z ∈ H such that∫ b

a
z(s)Ψ(x , s)ds = u(x), x ∈ [c , d ]
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Unstable models: Examples

Geophysics:
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Unstable models: Examples

Theoretical model:∫ b

a
Log( (x−ζ)2+H2

(x−ζ)2+Z 2(ζ) )dζ = 2π
ρ ∆g(x) = 2π

ρ (g + u(x)− g) = 2π
ρ u(x)

If αn(x)→ u(x) in a certain sense, in general Zn(x) 9 Z (x) with:∫ b

a
Log( (x−ζ)2+H2

(x−ζ)2+Z 2
n (ζ) )dζ = αn(x)
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Unstable models: Examples

Partial differential equations:

First model in chaos theory: Edward Lorenz 1961:

dx
dt (t) = Pr(y − x) ,

dy
dt (t) = −xz + Rx − y ,

dz
dt (t) = xy − bz ,

x(t0) = x0 ,

y(t0) = y0 ,

z(t0) = z0

The variable x , y are respectively proportional to the amplitudes of
the velocity field and the temperature field while z is connected to
the vertical mode temperature, t is time. If:

xε(t0) = x0 + ε , yε(t0) = y0 + ε , zε(t0) = z0 + ε , ε ≈ 0

then supt≥T ‖ (x(t), y(t), z(t))− (xε(t), yε(t), zε(t)) ‖≥ δ(T )
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Unstable models: Examples

∂u
∂y (x , 0) = ϕ(x), u(x , 0) = f (x), x ∈ < (Linear PDE)

f1(x) = ϕ1(x) = 0,∀x , then u1(x , y) = 0.

If f2(x) = 0, ϕ2(x) = 1
a sin(ax) , then u2(x , y) = 1

a2 sin(ax).( eay−e−ay

2 )
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Unstable models: Examples

It is clear that ‖ f1 − f2 ‖= 0 ,
‖ ϕ1 − ϕ2 ‖= supx | ϕ1(x)− ϕ2(x) |= 1

a → 0 when a→ +∞

but

‖ u1 − u2 ‖= supx,y | u1(x , y)− u2(x , y) |= +∞ , ∀a

(f1, ϕ1) ∼ (f2, ϕ2) if a→ +∞ but ‖ u1 − u2 ‖= +∞,∀a
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Instability in Optimization

(P) : Minx∈C f (x), f : X → <∪ {+∞}, argmin(f ,C ) = {z ∈
C/f (z) = Minx∈C f (x)}
(Pε) : ε.argmin(f ,C ) = {z ∈ C/f (z) ≤ Minx∈C f (x) + ε} is the
perturbed problem of (P) and (Pε=0) = (P)

We say that (P) is unstable or ill-posed if ε.argmin(f,C) 9 argmin(f,C)
if ε→ 0 that is: ∃(xε)ε in C such that xε ∈ ε.argmin(f ,C ) that is
f (xε)→ Minx∈C f (x) but (xε)ε does not converge to any point in
argmin(f ,C )

Example: f (x) = x if x > 0 and f (x) =| x + 1 | if x ≤ 0. We have
f ( 1

n )→ f (−1) = 0 = min(f ) but 1
n 9 −1.
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Instability in Optimization

Definition(A.Tikhonov, 1977):
we say that (P) : Minx∈C f (x) is well-posed in the Tikhonov sense if (P)
has a unique solution x ′ and for any sequence (xε)ε in C such that
f (xε)→ Minx∈C f (x) if ε→ 0 then (xε)ε → x ′. So every numerical
method generating a minimizing sequence converges to a solution of (P).

If C = X a normed space then (P) is well posed
⇔ f ∗(y) = supx{〈x , y〉 − f (x)} is differentiable at 0 and ∇f ∗(0) = 0.
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Instability in Optimization: Examples

1) if f : <n → < is convex function with a unique minimizer on <n

then minx∈<n f (x) is well-posed.

2) ill and well-posedness in optimal control:

minu∈C=BL∞ (0,1){I (u) =
∫ 1

0
x2(u)dt} s.b.t ẋ = u in (0, 1) and

x(0) = 0 , u ∈ BL∞(0, 1) ⊂ L∞(0, 1)
is ill-posed in the Tikhonov sense because I (uε)→ I (0) = minC I (u) ,
uε(t) = sin( t

ε
) but uε 9 0 in L∞(0, 1) because ‖ uε ‖L∞(0,1)= 1

minu∈C=BL∞ (0,1){J(u) =
∫ 1

0
x2(u)dt + ε.

∫ 1

0
u2dt} s.b.t ẋ = u in

(0, 1) and x(0) = 0 , u ∈ BL∞(0, 1) ⊂ L∞(0, 1)
is well-posed ∀ε > 0
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Regularizing an unstable Problem (P)

Why do we regularize an unstable Problem (P)?

If (P) is unstable it gives meaningless interpretations in practice

If there is a lake of good properties as stability, differentiability,
convexity, ... etc.

We regularize or stabilize an unstable problem (P) by replacing it by a
close robust problem (Pε):

(Pε) has a unique solution

(Pε) possesses regular, rich properties at the theoretical or numerical
level

(Pε) provides good interpretations and avoid us a meaningless
analysis

To (Pε) we apply a large class of numerical methods which may be
excluded by (P)

if ε→ 0 a solution of (Pε) is a good approximation of a solution of
(P)
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Regularizing an unstable Problem (P): Examples

In convex optimization:

(P): Minx∈C f (x) is supposed ill-posed in the Tikhonov sense (f , C are
convex in Rn, f is continuous, C is closed); that is ∃(xε)ε in C such that
xε ∈ εargmin(f ,C ), f (xε)→ Minx∈C f (x) but (xε)ε does not converge to
any point in S = argmin(f ,C ) 6= ∅.

(Pε) : Minx∈C (Fε(x) = f (x) + ε ‖ x − x0 ‖2), x0 is any given point in C.

(Pε) is well-posed in the Tikhonov sense (stable)

(Pε) has a unique solution xε and xε → projSx0 ∈ S = argmin(f ,C )

any algorithm generating a minimizing sequence f (xn,ε)→ min(Pε)
satisfies (xn,ε)n → xε when n→ +∞
xn,ε is a good approximation of a solution of (P) if n is large enough
and ε is sufficiently small
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Regularization Methods in optimization

Fε(x) = f (x) + ε ‖ x − x0 ‖p, p ≥ 2 , ∀x0 ∈ C

Fε(x) = f (x) + εϕ(x , ε) for a suitable choice of ϕ

Fε(x) = f (x) + ε
∑

i e
1
ε gi (x) (nice properties of the interior barrier

method and of the exterior penalty method)

Fλ(x) = infu{f (u) + 1
2λ ‖ x − u ‖p} , p ≥ 2 (Moreau-Yoshida

regularization of parameter λ and order p) . Fλ is always C 1

(Frechet differentiability) if f is convex on a reflexive space. (f is
not necessarily smooth)

argmin(Fλ,X ) = argmin(f ,X )

20 / 35



Regularization Methods in optimization

Gλ(x) = infu{f (u) + Φ( x−u
λ )} where Φ : X → < is continuous

coercive convex kernel, bounded on bounded sets and X is a normed
space
Lλ(x , y) = minu∈Xmaxv∈Y {L(u, v)+ 1

2λ ‖ x−u ‖
2 − 1

2µ ‖ y−v ‖
2}.X

and Y are Hilbert spaces.
This regularization is used to find a saddle point of the
convex-concave function L : XxY → < that is a point (x ′, y ′) such
that

∀(x , y) ∈ XxY , L(x ′, y) ≤ L(x ′, y ′) ≤ L(x , y ′) then
minxmaxyL(x , y) = maxyminxL(x , y) = L(x ′, y ′)

(Mathematical economics, equilibrium problem, location problems,
game theory, ...etc)

Consider the following saddle problem (Q):minx∈Xmaxy∈Y L(x , y)
Lλ(x , y) is a robust regularization in the sense that we can construct
efficient algorithms converging to a solution of (Q) as follows: Given
any point (x0, y0) ∈ XxY and set Jλ(x , y) = (xλ, yλ) =
argminu∈Xmaxv∈Y {L(u, v) + 1

2λ
‖ x − u ‖2 − 1

2λ
‖ y − v ‖2}

Consider the following algorithm (xk+1, yk+1) = Jλk (xk , yk) , λk → 0.
Under a wide class of hypotheses the sequence (xk , yk)k converges to
a solution of (Q) from any initial point (x0, y0) ∈ XxY . 21 / 35



Regularization in functional analysis and operator
theory

A sequence of functions ρn : <N → <+ is said to be a regularizante
sequence if ρn ∈ C∞c (<N) , supp(ρn) ⊂ B(0, 1

n ) ,
∫
<N ρndx = 1.

Example: ρn(x) = CnNρ(nx) with ρ(x) = (e‖x‖
2−1)−1 if ‖ x ‖< 1 ,

ρ(x) = 0 if ‖ x ‖≥ 1 , C = (
∫
<N ρdx)−1

We can make good regularization by using (ρn)n and the convolution
product: (ρn ∗ f )(x) =

∫
<N ρn(t)f (x − t)dt

if f ∈ L1
loc(<N) then ρn ∗ f ∈ C∞(<N)

C∞c (Ω) is dense in Lp(Ω), Ω is an open set of <N , p ∈ [1,+∞[

Frechet-Kolmogorov theorem

Friedrichs theorem: C∞c (<N)/Ω = W 1,p(Ω), p ∈ [1,+∞[
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Robustness of convergences and approximations

Let f : <N → < and (P): minx∈C f . It is well-known that point-wise
convergence is a bad tool in optimization that is:

if fn(x)→ f (x) when n→ +∞
∀x ∈ C =

⋂
n

⋃
k≥n Ck =

⋃
n

⋂
k≥n Ck , in general

minCn fn 9 minx∈C f

uniform convergence is very strong and not in general satisfied in
practice.
Taking in account that the regularization functions are robust we
can show in the convex case that

F n
λ(x) = infu{fn(x) + 1

2.λ ‖ x − u ‖2} −→ Fλ(x) = infu{f (x) + 1
2.λ ‖

x − u ‖2} ∀λ ∈]0,+∞[,∀x ∈ <N

⇓
fn → f in a non classical sense. In fact fn → f in the following

variational sens:

∀x ∈ <N , ∀xn → x , we have f (x) ≤ limfn(xn) and there exists
zn → x such that fn(zn)→ f (x).
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Robustness of convergences and approximations

This convergence is called Epi-convergence (
epi→) in the literature and has

remarkable stable properties:

If there exits a bounded sequence (un)n such that

fn(un) ≤ inf<N fn + εn and fn
epi→ f then inf<N fn → inf<N f and if

xnk → x ′ then f (x ′) = min<N f

fn
epi→ f ↔ f ∗n (y)

epi→ f ∗(y) = supx∈<N{〈x , y〉 − f (x)} (convex and
finite dimensional case, convergence of primal problems ⇒
convergence of dual problems )

Epi-convergence is the minimal convergence satisfying the last
properties

Epi-convergence is incomparable with point-wise convergence
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Robustness of convergences and approximations

There are many convergences which can be defined in infinite
dimensional setting and are more suitable with the study of perturbed
problems in parametric optimization, in mechanics, and elasticity as:

Painlevé-Kuratowski convergence

Hausdorff convergence

Mosco convergence

Slice convergence

Bounded convergence (or Attouch-Wets convergence)
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Robustness of convergences and approximations

We can also define many convergences for sets because the constraint
sets in optimization can be also approximated or pertubated:

Cn → C if C =
⋂

n cl(
⋃

k≥n Ck) = cl(
⋃

n

⋂
k≥ Ck)

Cn → C if d(x ,Cn)→ d(x ,C ), ∀x
Cn → C if sup‖x‖ ≤ ρ | d(x ,Cn)− d(x ,C ) |→ 0, ∀ρ

For regularization of bibariate functions we have:

F n
λ,µ(x , y) = infu∈X supv∈Y {Ln(u, v) + 1

2λ ‖ x − u ‖2 − 1
2µ ‖ y − v ‖2

} → Fλ,µ(x , y) = infu∈X supv∈Y {L(u, v) + 1
2λ ‖ x − u ‖2 − 1

2µ ‖
y − v ‖2}, ∀(x , y) , ∀λ, µ (positive) then Ln → L in a non classical
sense that is:

∀(x , y), ∀xn → x , ∃yn → y such f (x , y) ≤ limfn(xn, yn)
∀(x , y), ∀yn → x , ∃xn → y such limfn(xn, yn) ≤ f (x , y)
Ln → L in the Epi/hypo-convergence sense
if Ln → L in the Epi/hypo-convergence sense and (xn, yn) is a saddle
point of Ln (equilibrium point):

∀(x , y): Ln(xn, y) ≤ Ln(xn, yn) ≤ Ln(x , yn) and (xn, yn)→ (x ′, y ′)
then (x ′, y ′) is a saddle point of L and Ln(xn, yn)→ L(x ′, y ′) when

n→ +∞.
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Robustness of convergences and approximations

Is- it possible to elaborate a unified approach of general and robust
regularization allowing us to stabilize unstable problems and to
elaborate efficient hybrid algorithms for approximating a solution
of minf ? What is the relationship between the initial problem and
its regularized form? What are the fundamental properties of the
hard operator f → minf ?
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Robustness of convergences and approximations

(P):minx∈C f (x) , C ⊂ X general Hausdorff space.
Now consider a sequence g , hk : X → < of functions such that
rk = infx∈Chk(x) in finite for all k ≥ k0 and g is sci. To (P) we associate
the following generalized regularization problem (Pk) : minx∈CFk(x)
where Fk(x) = f (x) + εkg(x) + hk(x) , εk > 0 and we suppose that
εk → 0 if k → +∞ .
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Robustness of convergences and approximations

Theorem [Mentagui - 2016, International Journal of Maths
Programming]:
Assume that the following conditions hold:

(a) ik = infCFk is finite for every k ≥ k0 and (zk)k be a sequence of
C relatively compact satisfying:

Fk (zk )−ik
εk

→ 0 , k → +∞
(b) hk (s)−rk

εk
→ 0 , k → +∞, ∀s ∈ X

(c) S = argmin(f ,X ) 6= ∅
Then:

(1) (Fk ,X ) is stable in the Tikhonov sense
(2) Any cluster point z̄ ∈ C of (zk)k verifies z̄ ∈ argmin(g ,S).
(3) f (zk)→ f (z̄) and g(zk)→ g(z̄) when k → +∞.
(4) We have the following asymptotic development:

infC (f (x) + εkg(x) + hk(x)) =
minx∈C f (x) + εkminx∈Sg(x) + infx∈Chk(x) + εk .θk =

minx∈C f (x) + εkminx∈Sg(x) + infx∈Shk(x) + εk .θ
′
k (θk , θ

′
k → 0).

(5) ϕ : f → min(f ):

ϕ′(f , g) = limε→0
minC (f +εg)−minc (f )

ε‖g‖ = minx∈Sg(x)
‖g‖ .
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Robustness of convergences and approximations

Remark:

Our hypotheses are not restrictive and includes all regularizations
existing actually in the literature.

The regularizations Fε(x) = f (x) + εg(x) + hε(x) have the general
form and allow us to construct hybrid algorithms.

Concerning the saddle regularization and saddle point we have:
Consider two general topological Hausdorff spaces X ,Y and
f : XxY → <̄, g : XxY → <, hε : XxY → < are three functions with
ε > 0. Each function f, g is assumed to be lower semi-continuous (lsc) at
the first variable and upper semi-continuous (usc) at the second variable.
Denote by h1

ε = supy∈Y infx∈Xhε(x , y) and h2
ε = infx∈X supy∈Y hε(x , y)

which are supposed finite for every ε > 0 sufficiently small. Assume that
the set S = {(a, b) ∈ XxY /(a, b) is a saddle point of f} is nonempty. Set
Fε(x , y) = f (x , y) + aεg(x , y) + hε(x , y) with aε > 0, aε → 0 when
ε→ 0. If hε = 0 and g(x , y) = ai ‖ x ‖p −bi ‖ y ‖p with ai , bi are
positive real numbers and p, q ∈ N∗ then Fε reduces to the classical
Tikhonov regularization.
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Robustness of convergences and approximations

Theorem [Mentagui-2016, International Journal of Maths
Programming]
Let (xε, yε)ε be a relatively compact sequence such that
αε = supyFε(xε, y), βε = infxFε(x , yε), γε(t) = supyhε(t, y),
δε(z) = infxhε(x , z) are finite for every ε sufficiently small and every
(t, z) ∈ XxY . Assume that the following condition holds:

limε→0
αε−βε

aε
= limε→0

γε(t)−δε(z)
aε

= 0 ∀(t, z) ∈ XxY

Then

(i) any cluster point (x̄ , ȳ) of (xε, yε) is a saddle point of f on XxY
and is a saddle point of g on S . Furthermore for every α ∈ <, there
exists a sequence (δαε , θ

1,α
ε , θ2,α

ε )→ 0<3 if ε→ 0 depending on the
scheme under consideration such that
Fε(xε, yε) = f (x̄ , ȳ) + aεg(x̄ , ȳ) + α.h1

ε + (1− α)h2
ε + aεδ

α
ε and the

sequence (g(xε, ȳ), g(x̄ , yε),
f (xε,ȳ)−f (x̄,ȳ)

aε
, f (x̄,yε)−f (x̄,ȳ)

aε
,
h2
ε−h

1
ε

aε
)

converges to (g(x̄ , ȳ), g(x̄ , ȳ), 0, 0, 0) if ε→ 0;
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Robustness of convergences and approximations

(ii) F i
ε = f (x̄ , ȳ) + aεg(x̄ , ȳ) + α.h1

ε + (1− α)h2
ε + aεθ

i,α
ε and

limε→0
F 2
ε−F

1
ε

aε
= 0 where F 1

ε = supy∈Y infx∈XFε(x , y) and

F 2
ε = infx∈X supy∈Y Fε(x , y).

(iii) (Fε,XxY ) is stable in the sense of Tikhonov
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Inverse methodology in Perturbation theory (Classical
Mechanics, quantum mechanics, optimal control,
numerical analysis ...etc)

Perturbation theory comprises mathematical methods for finding an
approximate solution to a problem, by starting from the exact solution of
a related, simpler problem. A critical feature of the technique is a middle
step that breaks the problem into ”solvable” and ”perturbation” parts.
Perturbation theory is applicable if the problem at hand cannot be solved
exactly, but can be formulated by adding a ”small” term to the
mathematical description of the exactly solvable problem.

dx(t)
dt = f (x , t) + ε.g(x , t, u), u ∈ U, x(0) = x0, ε ' 0 (Optimal

control problems with small parameters as in Missile theory)
d2x(t)
dt2 + ω2

0x(t) + εx3(t) = 0, x(0) = x0, ẋ(0) = v0, ε ' 0 (Duffing
model in classical mechanics)
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Inverse methodology in Perturbation theory (Classical
Mechanics, quantum mechanics, optimal control,
numerical analysis ...etc)

Example of resolution:

(E): d2x(t)
dt2 + x(t)

τ + ε
τL0

x2(t) = 0, x(0) = x0, ε ' 0

solve DE (ε = 0): d2x(t)
dt2 + x(t)

τ = 0, z(t) = Ae−
t
τ

set xε = z(t) + εx1(t) + O(ε2) the solution of (E) and put xε(t) in
(E) then we find:

xε(t) = x0(1− ε x0

L0 )e−
t
τ + ε

x2
0

L0
e−

2t
τ + O(ε2)⇒ xε '

x0(1− ε x0

L0 )e−
t
τ + ε

x2
0

L0
e−

2t
τ when ε ' 0

Concerning dx(t)
dt = f (x , t) + ε.g(x , t, u), u ∈ U, x(0) = x0, ε ' 0 or

more generally:

(F): dx(t)
dt = f (x , t, ε, u), u ∈ U, x(0) = x0, ε ' 0

Theorem [Poincaré] : There exists an analytical solution
xε(t, u(t)) of (F)with xε(t, u(t)) = x(t, u(t)) +

∑∞
i=1 yiε

i ,

x(t, u(t)) is the solution of (F) with ε = 0: dx(t)
dt = f (x , t, 0, u),

u ∈ U, x(0) = x0.
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Thank You . . .
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